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ABSTRACT

The retrieval of scene properties (surface temperature, material type, vegetation health, etc.) from remotely sensed
data is the ultimate goal of many earth observing satellites. The algorithms that have been developed for these
retrievals are informed by physical models of how the raw data were generated. This includes models of radiation
as emitted and/or reflected by the scene, propagated through the atmosphere, collected by the optics, detected by
the sensor, and digitized by the electronics. To some extent, the retrieval is the inverse of this “forward” modeling
problem.

But in contrast to this forward modeling, the practical task of making inferences about the original scene usually
requires some ad hoc assumptions, good physical intuition, and a healthy dose of trial and error.

The standard MTI data processing pipeline will employ algorithms developed with this traditional approach.
But we will discuss some preliminary research on the use of a genetic programming scheme to “evolve” retrieval
algorithms. Such a scheme cannot compete with the physical intuition of a remote sensing scientist, but it may be
able to automate some of the trial and error. In this scenario, a training set is used, which consists of multispectral
image data and the associated “ground truth;” that is, a registered map of the desired retrieval quantity. The genetic
programming scheme attempts to combine a core set of image processing primitives to produce an IDL (Interactive
Data Language) program which estimates this retrieval quantity from the raw data.
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1. INTRODUCTION

The importance of “end-to-end simulation” is often emphasized1–3 in the development and assessment of science
retrieval algorithms. The front-end of an end-to-end simulation takes scene properties as given, and produces an
accurate estimate of the imagery that is ultimately produced by the sensor. This involves direct physical modeling
of the ambient radiation, the scene itself, the intervening atmospheric medium, and the sensor. The back-end of
this simulation is the retrieval; it takes the (simulated) sensor data as input and produces as its output an estimate
of the initial scene properties. Thus, the retrieval of scene properties from remotely sensed data is a problem of
inversion. And the assessment of the retrieval algorithm is obtained by direct comparison of the scene properties
that are provided in the original model (the “ground truth”) to the scene properties that are retrieved (“estimated
truth”).

The notion of retrieval as inversion appears in other applications as well. For example, in Refs. [4–6], a genetic
algorithm was used to evolve a chain of morphological operators to reduce noise in video imagery for archival BBC
footage. This was done by treating noise reduction as the inverse of noise corruption. Training sets were generated
from an initial set of clean (“truth”) images and from the corrupted versions of those images which were generated
by applying a known noise process. This approach is necessary as, in this application, there rarely (if ever!) exist
uncorrupted and corrupted versions of the same data. After all, if you already have an clean version of the data,
why bother attempting to “clean-up” a corrupted version?
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A generic retrieval provides a useful starting point, but an optimized retrieval is optimal only for a specific
system. The normalized difference vegetation index (NDVI) produces a fair first cut at a vegetation map and is
broadly applicable to a number of sensors, but for a specific sensor the best ratio of band differences will depend
on which bands are available. Furthermore, a multi-spectral retrieval might be quite different from a hyper-spectral
retrieval, not just in terms of different values for the parameters, but in terms of the functional form of the retrieval.
The best retrieval can also depend on the properties of the scene. An algorithm that works well at detecting vegetation
in the tropics might not recognize sagebrush in the desert.

While the nature of the retrieval algorithm is informed by the physical principles that drive the forward model, the
details are often “tweaked” to provide better agreement with whatever ground truth is available. The optimal back-
end retrieval depends, and often in a complicated way, on the details of the front-end simulation. For instance, the
best choice of a smoothing kernel will probably depend on an instrument noise level. Depending on the complexity of
the retrieval algorithm and the quality (and computational requirements) of the front-end simulation, this parameter
adjustment can be a laborious process. And when the instrument flies, further tweaks may be called for.

Most retrieval algorithms concentrate on either on spatial or spectral aspects of the image. As imagery becomes
ever more finely resolved, in both the spatial and the spectral axes, the potential for a good spatio-spectral retrieval
is enhanced. But while physical principles might indicate that a spatio-spectral retrieval is called for, it is difficult
to know how best to combine the features of both, and in practice such combinations are ad hoc. Here too is an
opportunity for automated retrieval design.

1.1. Obtaining ground truth

The need for ground truth in machine-learning approaches is an important, sometimes debilitating, obstacle. For
remote sensing retrievals, in particular, the collection of real ground truth data can be very expensive.

One way around this is to use forward models to produce artifical data. In this case, the ground truth is part of
the model and is known with complete accuracy and reliability. For instance Borel7 used a first-principles nonlinear
spectral mixing model8 of a leaf canopy over a soil surface to produce multispectral signatures of vegetation for use
in comparing various vegetation indices. The notion of vegetation index was extended in a follow-on paper by Gisler
and Borel9; here a neural network was used to derive new vegetation indices based not on the forward model, but
on the many training sets that the model could be called upon to generate.

A second approach, sometimes called scaffolding10–13 or shaping,14,15 attempts to keep the human analyst “in
the loop.” Using external information, context, and the unsurpassed pattern recognition capabilities of the retina
and brain, the analyst identifies areas of real imagery as containing or not containing the feature of interest. The
analyst needn’t identify every pixel, and the learning algorithm is rewarded/penalized for getting right/wrong only
those pixels that the analyst identified. But once a candidate retrieval is identified, it is applied to all pixels. The
analyst can critique the retrieval by identifying further pixels where the computer erred in its evaluation. On any
iteration, the analyst need only identify a fraction of the total pixels – it is the analyst’s expertise, not patience, that
is exercised.

2. GENETIC PROGRAMMING SCHEME

A genetic algorithm (GA) is a scheme for searching a large solution space using a population of candidate solutions
(chromosomes) which evolve by natural selection to perform some task, or achieve some goal, or solve some problem,
or approximate some function, etc. The relative fitness of each chromosome is evaluated according to how well it
performs its task, achieves its goal, solves its problem, etc. The least fit chromosomes are discarded, and those
remaining serve as parents for a new generation of chromosomes. The new chromosomes are derived from the parent
chromosomes either by small random changes (mutations) to the individual components of the chromosome (genes)
or by combining the genes from two of the parents (recombination). As the population of chromosomes evolve, the
individual chromosomes become increasingly fit for the task at hand. Mitchell’s book16 provides a recent overview of
genetic algorithms. When the solution space is a space of computer programs, then the term genetic programming
(GP) is usually applied. Koza17 provides an enthusiastic assessment of this approach.

Like most machine-learning schemes, the goal is to generalize from examples. For our remote sensing applications,
the examples are multiple “data planes” (corresponding, usually, to multiple spectral channels) of remote sensing
imagery bundled with a “truth plane,” which contains the desired retrieval for every pixel. The goal is to evolve
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Perl IDL Data

Figure 1. The genetic programming scheme is implemented in Perl and IDL. Evo-
lution (mutation, recombination, and selection) is managed by a Perl script, while
the computationally intensive image processing operations are performed in IDL.
The high-bandwith communication with the data (and weight and truth) planes is
done through the IDL program. The Perl script deals only with the chromosomes
and their fitness scores, so the two-way unix pipe that connects the two processes
is a low-bandwith connection.

a computer program (specifically, a multi-line program written in IDL18 which takes the data planes as input, and
provides an estimate of the truth plane as output. In practice, six kinds of “planes” can be used:

1. Raw data planes contain the (real or simulated) sensor image data.

2. Optional pre-processed planes can be provided as if they were raw data planes; these allow the scientist to
influence the GP scheme, by providing information that the GP is welcome (but not required) to exploit.

3. The truth plane provides the true value of the retrieval quantity for each pixel. The truth values can be
discrete or continuous values, depending on the nature of the retrieval. Binary values may be appropriate for
the identification of a specific feature (e.g., water or not water), while continuous values are appropriate for
quantitative scene properties (e.g., water temperature).

4. The weight plane indicates which pixels of the truth plane to take seriously. If the truth is known for only
a subset of the image, then this can be specified by setting the weight to zero at the unknown pixels. If the
operator wants to convey increased importance or reliability for certain regions, this can also be encoded in
the weight values.

5. Scratch planes (a.k.a. feature planes) contain images with intermediate processed results. These intermediate
planes permit us to evolve more complex algorithms while maintaing our code as a simple string of image
operators.

6. Answer planes are a specified subset of the data and scratch planes; these planes are combined to produce an
estimated truth plane. In the simplest mode, there is a single answer plane, and at the end of the processing,
it provides the estimated retrieval. The fitness of the candidate solution is given by the degree of agreement
between this plane and the truth plane.

If there are multiple answer planes, we presently use the best linear combination of the answer planes for our
estimated truth. We are currently investigating the use of other classification schemes for the transformation
of the answer planes into an estimate of truth.

The genes in our chromosomes are single lines of IDL code that call an image operation subroutine. We use
both spectral operators (various combinations of bands) and spatial operators (including a fairly extensive set of
traditional/linear and non-linear operators – morphology: erode, dilate, close, open, etc., local averages: mean and
median, local statistical measures: standard deviation, etc.). A gene reads one or more of the data and/or scratch
planes, and then writes the result to one (or more, but usually just one) of the scratch planes. The data planes are
never overwritten. The lines of IDL are executed in order, with no looping or back-tracking. After the last line has
been executed, the answer planes are combined to produce an estimated truth plane.

Fitness is based on the Euclidean distance between the estimated and final truth plane, with each pixel’s contri-
bution to that distance proportional to its weight in the weight plane.

The genetic algorithm is implemented in Perl, which communicates via a two-way pipe to an IDL process which
does the image processing and fitness evaluation, as shown in Fig. 1. We have recently added a Java-based interface
which permits the operator to specify more easily the values in the truth and weight planes interactively, thereby
facilitating an iterative response to early results.

Further details of our genetic programming scheme are presented elsewhere.19
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3. RETRIEVALS

Although most of the standard MTI data processing pipeline20 employs retrieval algorithms that have been developed
directly from first principles modeling, many of these algorithms involve at least a few parameters: thresholds,
coefficients of linear combinations, thresholds, etc. These parameters are generally fit to data that is already available,
either from the calibration lab, from similar missions that have already flown, or from the simulation end of the end-
to-end model. These are simple examples, but they illustrate the separate roles of the scientist and the data-adaptive
algorithm: the scientist decides on the form of the retrieval, the appropriate physical quantities, and the correct
dimensional units; and the computer algorithm rapidly and systematically determines the fine details – in this case,
the optimal values of the parameters.

Our goal, in the subsequent examples, is to provide a more expansive role for the computer, to alleviate some of
the more tedious aspects involved in deriving a retrieval algorithm, while still retaining the expertise and intuition
of the scientist who “understands” the physics of the forward simulation.

3.1. Water Mask

Water is ubiquitous in remote sensing imagery. Its properties are of interest their its own right; and because of its
relative homogeneity compared to land surfaces, it is a useful backdrop in the retrieval of atmospheric properties.
The water mask identifies which pixels in a registered multispectral image correspond to water. This is a binary
mask, and is required as a first step for more sophisticated retrievals, such as water temperature and water quality
retrieval.

Water can be identified both by its spectral properties (low reflectance in the NIR and negative NDVI) and by
its spatial properties (generally smooth and homogeneous, at least for larger bodies of water). The spatial properties
in particular will depend on the details of the remote sensing platform: the ocean observed from low altitude on a
windy day will have considerably more texture than Crater Lake as seen from a satellite. Further requirements may
be placed on the spatial properties of the truth image. For instance, to reduce adjacency effects in the temperature
retrieval, one may want a mask that only includes larger bodies of water and avoids the shoreline.

For the MTI production pipeline, a water mask algorithm was developed by hand, combining in a physically-
motivated way both spatial and spectral operators. For the purpose of testing the Genetic Programming scheme,
we took the production water mask as “truth” and attempted to produce an algorithm whose output would match
this truth. The standard algorithm is a best-of-three vote among three simpler algorithms. Each of these simple
algorithms was designed to capture some aspect or identify some specific type of water. The first cut captures some
general characteristics of water, namely a low radiance in the NIR and a negative NDVI. The next two cuts were
designed to include specific types of water. The second cut identifies large, uniform bodies of water by combining a
spatial smoothness measure (standard deviation of radiance values in a kernel) with a negative NDVI. The third cut
detects smaller bodies of water such as streams, ponds, and coastlines. To be classified as water under this cut, a
pixel must have a low radiance in the NIR, a green/red ratio greater than one, and have a value less than the average
of values in a surrounding kernel. Some preliminary results on the application of the GP scheme to this problem are
described in Ref. [19].

3.2. Vegetation

Water is water is water (well, more or less), but vegetation can be a jungle canopy in Guatemala, a corn field in
Iowa, or a lone saguaro in Tombstone, Arizona. Nonetheless, nearly all vegetation exhibits a characteristic feature
in the V/NIR (Visible and Near Infrared); it is dark in the red and bright in the near infrared. A number of indices
that have been proposed for detecting vegetation in multispectral imagery are based on this red-edge feature (Borel7

reviews several of these, and compares their performance at identifying vegetation in an ab initio model). The most
popular is the Normalized Difference Vegetation Index (NDVI), which is defined by

NDVI =
ρnir − ρred
ρnir + ρred

(1)

where ρν is the reflectance in band ν. To obtain a true reflectance requires atmospheric correction, but an often-used
approximation employs the TOA radiance in place of reflectance in this formula.
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(a) (b)

(c) (d)

Figure 2. (a) Application of the NDVI index to the appropriate bands of 15-channel MAS data provides the
“truth” plane which the Genetic Programming Scheme attempts to mimic. (b) Estimated truth from the best
evolved algorithm is essentially identical to the original NDVI. (c) Estimated truth from an algorithm which did not
include a normalized difference operator in the GP gene pool. (d) Best fit linear combination of data planes provides
a simple estimate, against which the GP scheme can be compared.

3.2.1. NDVI as truth

The task set for the Genetic Programming scheme was, as in the water mask case described previously, to produce an
algorithm whose output would match an artifical “truth.” Unlike the water mask problem, however, the truth plane is
not a binary mask but is the continuous values given by Eq. (1). Our data set was the first fifteen bands (0.523–1.914
µm) of radiance data from the MODIS (Moderate Resolution Imaging Spectrometer) Airborne Simulator (MAS21,22).
For red, we used band 3 (0.679–0.721 µm), and for near-IR, we used an average of bands 5 and 6 (0.761–0.844 µm).
Thus, the training set consisted of the 15-band MAS image data and the NDVI image “truth” shown in Fig. 2(a).

The GP was then run on this training set. A population of fifty chromosomes was evolved, starting with random
chromosomes, for five hundred generations. The best algorithm found by the GP at the end of the run was then
applied to the 15-band MAS data set. The result is shown in Fig. 2(b).

Subjectively, it can be seen that the resulting algorithm was able to produce an output that matched the “truth”
image extremely well. To put some objective measure on this result, the root-mean-square difference between these
images is about 0.2% of their full range.

The algorithm found by the GP is described below. The 15 input data planes are labelled a, b, c, ..., o
(despite the common nomenclature, these bands do not correspond with the 15 bands of MTI data). The algorithm
used three scratch planes, labelled A, B, C. The answer planes included all the input data planes and the scratch
planes, and the final answer was the best linear combination of these planes.
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Scratch Data Data Data Data Data
Band Coeff Band Coeff Band Coeff Band Coeff Band Coeff Band Coeff

A −0.0977 a −0.0222 b 0.0605 c 0.0495 d −0.0161 e −0.0398
B 1.0226 f −0.0257 g −0.0486 h −0.0237 i 0.0198 j −0.0020
C 0.0022 k −0.0080 l 0.0408 m 0.0739 n 0.0167 o 0.0135

Table 1. Coefficients for the linear combination of answer planes in the NDVI problem. The upper case values
are scratch planes; the lower case are the raw data planes. The dominant coefficient is for scratch plane B, which is
associated with the normalized difference operator.

Scratch Data Data Data Data Data
Band Coeff Band Coeff Band Coeff Band Coeff Band Coeff Band Coeff

A 0.97667 a 0.45914 b 0.21151 c 0.15564 d 0.09135 e 0.02601
B 0.15197 f 0.02302 g −0.02723 h −0.01355 i 0.05015 j −0.04464
C 0.66169 k −0.37967 l −0.17836 m 0.07275 n 0.03766 o 0.02887

Table 2. Coefficients for the linear combination of answer planes in the NDVI problem for the case in which the
gene pool did not contain a normalized difference operator.

Each line in the following algorithm represents an “active” gene in the best chromosome. The gene consists of an
operator, input plane(s), output plane(s) and any other necessary parameters for the operator.

A = divide_planes(a,b)

B = norm_diff(c,e)

C = sqrt(i)

It can be seen that the resulting algorithm actually contains a normalized difference operator; in fact the input
bands for the normalized difference operator are nearly the same as were used in the generation of this NDVI truth;
these are band c (i.e., Red band 3) and band e (i.e., NIR band 5). Finally, from the coefficients for the linear
combination of the answer planes (shown in Table 1), it can be seen that the dominant contribution to the final
output image comes from the scratch band which is the output of the normalized difference operator (i.e., scratch
plane B).

We also ran the GP scheme using a set of genes that did not include the normalized difference operator. The
algorithm that was found involved three separate band ratios.

C = divide_planes(e,d)

A = divide_planes(g,b)

B = divide_planes(j,b)

Looking at the coefficients of the back-end linear fit (Table ??), we see that the ratios C=e/d and A=g/b are the
most important, and that these scratch planes are more important than any of the individual data bands. The error
achieved by this algorithm was 1.6%.

Finally, as a control experiment, we also found the best linear combination of the data planes. By eye, as seen in
Fig. 2(d), the approximation is not too bad, but the error is about 8.8%.

3.2.2. “Bushy Tree” Identification

The GP scheme was also given the task of identifying areas of an image containing what appear to be “bushy
trees” from a 3-band Digital Orthoquad (DOQ) image provided by the United States Geological Survey (USGS). An
example of an area of one of the data planes is shown in Fig. 3(a).
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(a) (b) (c)

Figure 3. (a) The “bushy trees” are readily seen by eye in the first channel (0.52–0.57 µm) of the raw data cube.
(b) The hand-drawn truth plane indicates (in white) the pixels which the analyst confidently identifies as bushy
trees. (c) The hand-drawn weight plane indicates (in white) which pixels to use as training data. Where the weight
plane is white and the truth plane is black, the analyst has confidently identified as places where there are not bushy
trees. Where the weight plane is black, the analyst has not made an identification one way or the other.

(a) (b)

Figure 4. (a) Applying the best evolved algorithm to the data in “bushy trees problem” shown in Fig. 3(a) produces
an estimate of the truth plane provided in Fig. 3(b). (b) Thresholding the estimated truth image in panel (a) shows
that the bushy trees are indeed highlighted by this algorithm.

Here, in contrast to the NDVI problem, we created a truth map by hand. This truth plane is shown in Fig 3(b).
It can be seen that not all areas which contain “bushy trees” have been labelled: only generally, very obvious areas.
The weight plane, shown in Fig. 3(c), indicates the confidence the analyst places in the truth values provided in
the truth plane. Where the weight is zero, the truth data is meaningless, The GP scheme was then applied to this
training set. The best algorithm found by the GP at the end of the run was then applied to the 3-band DOQ USGS
data set. The result is shown in Fig. 4(a).

It can be seen that the algorithm found by the GP scheme has been able to highlight the areas of the image in
which there are the desired “bushy trees”. It should also be noted that the areas of the image containing the bushy
trees which were not highlighted in the training set have been highlighted, as well as those areas in the training set.
A thresholded image, as shown in Fig. 4(b) gives a better indication of the algorithm’s performance.

The actual algorithm found by the GP scheme is shown below. The three input data planes are labelled a, b,
c; the three scratch planes are labelled A, B C. The answer planes included all six planes.

C = close_open(c,3,/circle)

C = mean(C,7,/circle)

A = divide_planes(C,b)
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Scratch Data
Band Coefficient Band Coefficient

A 0.8133 a 16.7700
B 0.0000 b -36.9398
C 1.3282 c 9.4643

Table 3. Coefficients for the linear combination of answer planes in the bushy trees problem.

(a) (b) (c)

Figure 5. (a) First band of an out-of-sample data set used for testing the bushy trees algorithm. (b) Estimated
truth is obtained from the same algorithm (same operators, same parameters, and same linear combination at the
back end) that was used in the training set. (c) Thresholded truth highlights where the bushy trees are predicted
to be.

The algorithm is applying a morphological close-opening with a 3× 3 circular structuring element to the third
data plane. This will smooth out highly localized fluctuations that are often found in otherwise flat or textureless
areas such as the water. Then a local average, having a 7 × 7 circular window, is applied to this morphologically
smoothed image. This will smooth out larger textures within the image. The ratio of this smoothed image and the
unprocessed first data plane is then calculated.

The coefficients for the linear combination of the answer planes are shown in Table 3. What can be seen here is
that the unprocessed data planes provide a large contribution to the overall output and the scratch plane (B) not used
by the algorithm, obviously makes no contribution at all. These coefficients indicate that the linear combination of
the unprocessed data planes is the major contributor to the solution, and the contribution made by the (nonlinear)
scratch planes is a small adjustment to that solution. But this small adjustment permits the solution to be much
closer to the truth as provided by the analyst. It is, as in many approximation schemes, the last few percent which
take the most effort to achieve.

To estimate the out-of-sample performance of the algorithm found by the GP scheme, we applied it to data that
was not part of the training set. This data was still part of the overall data set from which the training set was
taken, but was from an entirely different region (i.e., no overlap between this data and training set). Fig. 5(a) shows
the first channel of this out-of-sample data.

We used the same algorithm (with the same linear coefficients) that was optimized for the training data, and
applied it to the out-of-sample data. The result is shown in Fig. 5(b). The thresholded version of this image, seen
in Fig. 5(c), shows that the correct areas of the image have been highlighted.

4. DISCUSSION

A common problem of machine-learning schemes is that they try to solve the whole problem at once. There are,
however, two human experts we are particularly keen to take advantage of. The first is the remote sensing scientist
who understands the physical phenomenology of the forward model; the second is the technical analyst who has
experience in interpreting imagery, and is skilled at identifying ground properties from these images.
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• An important role for the scientist is in determining which “data planes” should be used (usually, all of them!)
and what preprocessed feature planes are expected to be useful. For instance, if it is an attribute of vegetation,
then an NDVI plane can be added directly to the list of data planes.

• The scientist is also called upon to provide the list of elementary operators that will be used to build up the
full retrieval algorithms. While progress can be made by employing generic operators, the scientist has the
opportunity to customize the nature of the solution by providing a set of image operators that are likely to be
useful.

• Ground truth campaigns are expensive, and although a necessary part of a remote sensing program, cannot be
expected to provide the vast quantities of ground truth that pattern recognition software requires to do a good
job. The technical analyst can often do a good job of estimating ground truth from subtle contextual cues
that would be difficult to encode into an expert system. In particular, the analyst can critique the preliminary
solutions provided by the GP scheme without identifying thousands of pixels worth of truth; instead, the
analyst only identifies where the the automated scheme got it wrong.

• Both the analyst and the scientist can provide a useful service in choosing an initial set of chromosomes. These
can be chosen from “untweaked” versions of known retrieval algorithms, or from previously developed solutions
to related problems.
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